3.1294 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=174 \[ \frac{(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A-B+C) \sin (c+d x)}{d \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+a)}+\frac{(3 A-3 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}-\frac{(A-3 B+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

-(((A - 3*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((3*A - 3*B + 5*C
)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) - ((A - B + C)*Sin[c + d*x])/(d*(a
+ a*Cos[c + d*x])*Sec[c + d*x]^(3/2)) + ((3*A - 3*B + 5*C)*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.318428, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.14, Rules used = {4221, 3041, 2748, 2639, 2635, 2641} \[ \frac{(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A-B+C) \sin (c+d x)}{d \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+a)}+\frac{(3 A-3 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}-\frac{(A-3 B+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

-(((A - 3*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((3*A - 3*B + 5*C
)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) - ((A - B + C)*Sin[c + d*x])/(d*(a
+ a*Cos[c + d*x])*Sec[c + d*x]^(3/2)) + ((3*A - 3*B + 5*C)*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c + d*x]])

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3041

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((a*A - b*B + a*C)*Cos[e + f*x]*(
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(
b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x)) \sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx\\ &=-\frac{(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x)}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \left (-\frac{1}{2} a (A-3 B+3 C)+\frac{1}{2} a (3 A-3 B+5 C) \cos (c+d x)\right ) \, dx}{a^2}\\ &=-\frac{(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x)}-\frac{\left ((A-3 B+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 a}+\frac{\left ((3 A-3 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{3}{2}}(c+d x) \, dx}{2 a}\\ &=-\frac{(A-3 B+3 C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}-\frac{(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x)}+\frac{(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}+\frac{\left ((3 A-3 B+5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a}\\ &=-\frac{(A-3 B+3 C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}+\frac{(3 A-3 B+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 a d}-\frac{(A-B+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x)}+\frac{(3 A-3 B+5 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.781232, size = 163, normalized size = 0.94 \[ -\frac{2 \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \left (-(3 A-3 B+5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+3 (A-3 B+3 C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{1}{2} \left (\sin \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{3}{2} (c+d x)\right )\right ) \sec \left (\frac{1}{2} (c+d x)\right ) (3 A-3 B+2 C \cos (c+d x)+5 C)\right )}{3 a d (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Cos[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*(3*(A - 3*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] - (3
*A - 3*B + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + ((3*A - 3*B + 5*C + 2*C*Cos[c + d*x])*Sec[(c +
d*x)/2]*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2]))/2))/(3*a*d*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 1.113, size = 300, normalized size = 1.7 \begin{align*} -{\frac{1}{3\,da}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 3\,A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +3\,A{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -3\,B{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -9\,B{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +5\,C{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +9\,C{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) -8\,C \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+ \left ( 6\,A-6\,B+18\,C \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+ \left ( -3\,A+3\,B-7\,C \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))-3*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+5*C*EllipticF(cos(
1/2*d*x+1/2*c),2^(1/2))+9*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-8*C*sin(1/2*d*x+1/2*c)^6+(6*A-6*B+18*C)*sin
(1/2*d*x+1/2*c)^4+(-3*A+3*B-7*C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A}{\cos{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}} + \sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{B \cos{\left (c + d x \right )}}{\cos{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}} + \sqrt{\sec{\left (c + d x \right )}}}\, dx + \int \frac{C \cos ^{2}{\left (c + d x \right )}}{\cos{\left (c + d x \right )} \sqrt{\sec{\left (c + d x \right )}} + \sqrt{\sec{\left (c + d x \right )}}}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

(Integral(A/(cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x) + Integral(B*cos(c + d*x)/(cos(c + d*x)
*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x) + Integral(C*cos(c + d*x)**2/(cos(c + d*x)*sqrt(sec(c + d*x)) +
sqrt(sec(c + d*x))), x))/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)